Свойства углеводородов. Получение углеводородов. Научная библиотека - рефераты - реферат: получение углеводородов. важнейшие представители углеводородов Промышленные способы получения углеводородов

Углеводороды входят в состав бензинов, являющихся горючим для двигателей внутреннего сгорания. В двигателе пары горючего подвергаются максимальному сжатию; при воспламенении входящие состав горючего углеводороды мгновенно разлагаются со взрывом, образуя продукты полного сгорания (СО 2 , пары Н 2 О). Однако этот процесс может сопровождаться так называемой дето­нацией, т.е. преждевременным взрывом горючего до достижения максимального сжатия. При этом происходит неполное сгорание (с образованием СО, Н 2 и «осколков» углеводородов), энергия топлива используется не полностью, нарушается ритм работы двигателя. Вы­яснено, что детонационные свойства углеводородов зависят от их строения: чем больше разветвлена цепь углеводорода (т. е. чем больше в его молекуле третичных и четвертичных углеродных атомов), тем меньше он склонен к детонации и тем выше его ка­чество как горючего; чем меньше разветвлена цепь, тем склон­ность к детонации больше. Так, высокими антидетонационными свойствами обладает входящий в состав бензинов углеводород 2,2,4-триметилпентан (изооктан); крайне склонен к детонации н-гептан:



Изооктан н -Гептан

Из изооктана и н -гептана готовят стандартные топливные смеси, с детонационными свойствами которых сравнивают детонационные свойства различных горючих (бензинов и т.п.). Последние характеризуют так называемым октановым числом (о.ч.). Например, если о.ч. горючего равно 85, это значит, что оно по детонационным свойствам подобно смеси, содержащей 85% изооктана и 15% н -гептана. Высококачественное горючее для авиационных и автомобильных моторов должно иметь о.ч. выше 90. Иначе говоря, высококачественные бензины должны быть богаты углеводородами с разветвленной углеродной цепью. Антидетонационные свойства бензинов могут быть повышены добавлением к ним различных веществ (антидетонаторов), например тетраэтилсвинца.

Тетраэтилсвинец. (С 2 Н 5 ) 4 Pb . Тетраэтилсвинец относится к свинцеорганическим соединениям. Тетраэтилсвинец ТЭС получают при взаимодействии хлористого этила со сплавом натрия и свинца

4 С 2 Н 5 – С l + 4 Na + Pb (C 2 H 5 ) 4 Pb + 4 NaCl

хлористыйтетраэтилсвинец

этил

Тэтраэтилсвинец – бесцветная тяжёлая жидкость, со слабым фруктовым запахом; d4 = 1,653. Очень ядовит: проникает в организм не только при вдыхании его паров, но и всасывается через кожу, вызывая серьёзные отравления. Применяется в качестве добавки к низкосортным бензинам (антидетонатор). Известен под сокращенным названием – ТЭС, а также под названием этиловая жидкость.

Способы получения галогенопроизводных предельных углеводородов

Замещение водорода в предельных углеводородах на галоген. При действии галогенов на предельные углеводороды под влиянием света в результате замещения атомов водорода образуется галогеналкины.

Например:

CH 4 + Cl 2 CH3Cl + HCl

МетанХлористый метил

Однако при этом образуются и значительные количества полигалогенпроизводных.

При прямом галогенировании более сложных углеводородов замещение водорода может происходить у различных углеродных атомов. Так, например, уже при хлорировании пропана реакция протекает по двум направлениям – образуется смесь двух галогеналкилов



Получение из непредельных углеводородов . Галогеналкины образуются при присоединении галогеноводородов к этиленовым углеводородам



При присоединении к этиленовым углеводородам галогенов или к ацетиленовым – галогеноводородов образуются дигалогенопроизводные. Из ацетиленовых и диеновых углеводородов в результате присоединения галогенов могут буть получены разнообразные тетрагалогенпроизводные.

Получение из спиртов. Наиболее удобным способом получения галогеноалкилов является замещение гидроксильной группы спиртов R– OH на галоген.

Если действовать на спирт галогенводородом, то образуется галогеналкил


Однако по мере образования галогеналкила и воды последняя будет гидролизовать галогеналкил, и поэтому такая реакция обратима. Чтобы получить хорший выход галогеналкила, в реакцию вводят избыток галогенводорода либо ведут ее в присутствии водооотнимающих средств (концентрированной серной кислоты). Например:



Для получения галогеналкилов удобно действие на спирты галогенных соединений фосфора. Например:



Или


Способы получения предельных углеводородов

Здесь рассмотрены общие методы синтеза предельных углеводородов . Каждый класс органических веществ, в том числе предельные углеводороды, характеризуется рядом общих методов синтеза. Последние позво­ляют судить о связи соединений данного класса с веществами других классов и о путях их взаимных превращений. Кроме того, синтез вещества из других соединений, строение которых известно, служит одним из лучших способов доказательства строения этого вещества.

Синтез из непредельных углеводородов . Состав непредельных углеводородов, содержащих, например, двой­ную или тройную связи, выражается общими эмпирическими фор­мулами: Сn Н 2 n или С n Н 2 n -2; таким образом, они отличаются от предельных углеводородов по содержанию водорода. Для получе­ния предельных углеводородов непредельные подвергают действию водорода (реакция гидрирования) в присутствии катализаторов (Ni, Рd, Рt):

H2 + H2

С n Н 2n СnН2n+2 СnН2n-2

Катализаторкатализатор

УглеводородПредельныйУглеводород

С двойнойуглеводородс тройной

СвязьюСвязью

Таким путем, например, из этилена или ацетилена может быть получен этан.

Восстановление галогенпроизводных. При замещении атомов галогенов в молекулах предельных галогенпроизводных на водород образуются предельные углеводороды. Наиболее удобно действие водорода в момент выделения* или иодистоводородной кислоты на иодпроизводные


Например:



Такой водород и называют водородом в момент выделения.

Получение из органических кислот. Орга­нические карбоновые кислоты в различных условиях могут разла­гаться с образованием предельного углеводорода и двуокиси угле­рода


Этот метод приводит к образованию углеводородов с меньшим числом углеродных атомов, чем в исходном соединении.

Синтез более сложных углеводородов из галогенпроизводных с меньшим числом ато­мов углерода (синтез Вюрца). Данный метод заключается в получении углеводородов из галогенпроизводных при действии на них металлического натрия. Реакция (синтез Вюрца) протекает при нагревании по схеме


Таким методом, беря в качестве исходных веществ соответствующие галогенпроизводные, можно получить любой углеводород задан­ного строения и тем самым подтвердить это строение. Допустим, требуется получить один из изомерных пентанов - 2-метилбутан


Однако нетрудно понять, что, когда в реакцию вводят смесь двух галогенпроизводных, эта реакция будет протекать еще по двум направлениям, так как молекулы каждого из галогенпроизвод­ных могут реагировать попарно друг с другом, а именно:

Таким образом, из смеси двух галогенпроизводных по реакции Вюрца всегда образуется смесь трех углеводородов, которая может быть разделена на составляющие соединения, (обычно при помощи дробной перегонки).

>Синтез углеводородов из окиси углерода и водорода. При пропускании смеси окиси углерода (СО) и водорода (Н 2) над нагретым до 200°С катализатором, содер­жащим восстановленное железо, образуются смеси преимущественно предельных углеводородов


Процесс имеет большое практическое значение, так как получен­ные смеси углеводородов представляют собой синтетический бензин. Исходным продуктом для синтеза могут служить получаемые раз­личными методами смеси СО и Н 2 . Смесью этих газов является, например, синтез-газ, получаемый из природных газов, содержащих метан, или водяной газ, образующийся при пропускании водяного пара над раскаленным углем.

Получение предельных углеводородов из природных продуктов. Природными источниками предельных углеводородов служат раз­нообразные продукты, из которых наиболее важны природные горю­чие газы, нефть и горный воск.

Природные горючие газы представляют собой смеси газообразных углеводородов; они содержатся в земной коре, образуя огромные газовые месторождения. Кроме того, горючие газы сопутствуют нефти (природный нефтяной газ) и часто в больших количествах (например, в районе Грозного и Баку) выделяются из скважин в процессе нефтедобычи (попутный нефтя­ной газ).

Главная составная часть природных газов - метан. Неф­тяной газ наряду с метаном содержит этан, пропан, бутан и изобутан. Содержание этих углеводородов неодинаково для газов различ­ных месторождений. Так, в состав нефтяного газа, добываемого в районе Баку и Саратова, входит 85-94% метана и лишь неболь­шое количество его гомологов. В то же время в нефтяном газе некото­рых месторождений района Грозного, а также в Краснодарском крае содержание этана, пропана и бутанов достигает 50%. Иногда в неф­тяном газе содержится и значительное количество паров низко­кипящих углеводородов, входящих в состав бензинов; поэтому он может служить источником легких бензиновых фракций (см. ниже).

Природные газы - дешевое и эффективное топливо, используе­мое как в промышленности, так и в быту. Кроме того, они служат ценным химическим сырьем. Особенно перспективно в этом отноше­нии использование попутного нефтяного газа: содержащиеся в нем углеводороды являются исходными веществами для получения синтетического каучука, пластических масс и других синтетических атериалов.

В России имеются богатейшие газовые месторождения; на­пример, Москва снабжается газом из Саратовских месторождений, Киев - из месторождений Западной Украины и т. п.

Нефть и её переработка. Нефть - природное иско­паемое, представляющее собой сложную смесь органических ве­ществ, главным образом углеводородов. Она является ценнейшим продуктом, с использованием ее связаны самые разнообразные от­расли народного хозяйства. Состав нефти неодинаков в различных месторождениях. Так, в России предельные углеводороды ряда ме­тана преобладают, например, в ромашкинской (Татария), долинской (Украина), жетыбайской (Казахстан) нефтях. Нефть, добываемая в Азербайджане и на о. Сахалин, бога­та преимущественно циклическими предельными углеводородами - циклопарафинами. Некоторые нефти (например, павлов­ская, Пермская обл.) содержат значительные количества ароматических углеводородов.

Нефть содержит как жидкие, так и растворенные в них твердые и в некотором количестве газообразные углеводороды. При большом содержании последних нефть иногда под давлением газов фонтаном выбивается из буровых скважин.

Нефть - эффективное и дешевое топливо. Кроме того, она является наиболее ценным химическим сырьем, на основе которого получают синтетический каучук, пластмассы и т.п.

Путем переработки из нефти получают продукты различного назначения. Главный способ переработки нефти - фракциониро­вание (перегонка), при котором (после предварительного удаления газов) выделяют следующие основные нефтепродукты:

1. Бензин (сырой); температура кипения до 150-205°С.

2. Керосин; температура кипения от 150 до 300°С.

3. Нефтяные остатки (мазут).

Бензиновая фракция содержит углеводороды с 5-9 атомами углерода. Повторными разгонками из нее выделяют петролейный, или нефтяной, эфир (темп. кип. 40-70°С), бензины различных назначений - авиационный, автомобильный (темп. кип. 70-120 С С) и др.

Керосиновая фракция содержит углеводороды с 10-16 угле­родными атомами, а нефтяные остатки (мазут) - смесь высших углеводородов.

Из мазута при температуре выше 300°С отгоняется некоторое количество не разлагающихся при этой температуре продуктов, которые называют соляровыми маслами и применяют в качестве раз­личных смазочных средств. Кроме того, из мазута путем очистки, перегонки под уменьшенным давлением или с водяным паром получают и такие ценные продукты, как вазелин и парафин (послед­ний представляет собой смесь твердых углеводородов, которыми особенно богаты некоторые сорта нефти). Остаток после переработки мазута - так называемый гудрон - применяют для покрытия дорог. Мазут используют и непосредственно как топливо.

Наиболее ценными для современной техники продуктами пере­работки нефти являются бензины. Однако при прямой перегонке из нефти получается лишь до 20% (в зависимости от сорта и место­рождения нефти) бензиновой фракции. Выход ее может быть увели­чен до 60-80% при помощи крекинга высших нефтяных фракций. Первая установка по крекингу нефти была построена в 1891 году в России инженером В. Г. Шуховым.

В настоящее время различают следующие основные типы кре­кинга: а) жидкофазный, при котором сырье (мазут) подается в печи крекинга в жидком виде; б) парофазный, когда сырье подается в виде паров, и в) каталитический, при котором сырье разлагается на специальных катализаторах. В зависимости от типа крекинга получаются крекинг-бензины, отличающиеся по составу и имеющие различные назначения.

При крекинге, наряду с жидкими бензиновыми углеводородами, получаются более простые газообразные, главным образом непре­дельные углеводороды. Они образуют так называемые газы крекинга (до 25% от крекируемого нефтепродукта). Последние являются цен­ным промышленным источником непредельных углеводородов. Некоторое количество легкого бензина может быть получено путем сжатия из нефтяного газа, при этом содержащиеся в нем пары бензиновых углеводородов сгущаются, образуя так называемый газовый бензин.

Горный воск. Горный воск, или озокерит, представляет собой смесь твердых углеводородов. Залежи его имеются на острове Челекен (Каспийское море), в Средней Азии, в Краснодарском крае, в Польше. Из озокерита выделяют твердое вещество церезин - заме­нитель воска.

Углеводороды разных классов (алканы, алкены, алкины, алкадиены, арены) можно получать различными способами.

Получение алканов

Крекинг алканов с изначально бо льшей длиной цепи

Процесс, используемый в промышленности, протекает в интервале температур 450-500 o C в присутствии катализатора и при температуре 500-700 o C в отсутствие катализатора:

Важность промышленного процесса крекинга заключается в том, что он позволяет повысить выход бензина из тяжелых фракций нефти, которые не представляют существенной ценности сами по себе.

Гидрирование непредельных углеводородов

  • алкенов:
  • алкинов и алкадиенов:

Газификация каменного угля

в присутствии никелевого катализатора при повышенных температуре и давлении может быть использована для получения метана:

Процесс Фишера-Тропша

С помощью данного метода могут быть получены предельные углеводороды нормального строения, т.е. алканы. Синтез алканов осуществляют, используя синтез-газ (смеси угарного газа CO и водорода H 2), который пропускают через катализаторы при высоких температуре и давлении:

Реакция Вюрца

С помощью данной реакции могут быть получены углеводороды с бо льшим числом атомов углерода в цепи, чем в исходных углеводородах. Реакция протекает при действии на галогеналканы металлического натрия:

Декарбоксилирование солей карбоновых кислот

Сплавление твердых солей карбоновых кислот со щелочами приводит к реакции декарбоксилирования, при этом образуются углеводород с меньшим числом атомов углерода и карбонат металла (реакция Дюма):

Гидролиз карбида алюминия

Взаимодействие карбида алюминия с водой, а также кислотами-неокислителями приводит к образованию метана:

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4

Al 4 C 3 + 12HCl = 4AlCl 3 + 3CH 4

Получение алкенов

Крекинг алканов

Реакция в общем виде уже была рассмотрена выше (получение алканов). Пример реакции крекинга:

Дегидрогалогенирование галогеналканов

Дегидрогалогенирование галогеналканов протекает при действии на них спиртового раствора щелочи:

Дегидратация спиртов

Данный процесс протекает в присутствии концентрированной серной кислоты и нагревании до температуры более 140 о С:

Обратите внимание, что и в случае дегидратации, и в случае дегидрогалогенирования отщепление низкомолекулярного продукта (воды или галогеноводорода) происходит по правилу Зайцева: водород отщепляется от менее гидрированного атома углерода.

Дегалогенирование вицинальных дигалогеналканов

Вицинальными дигалогеналканами называют такие производные углеводородов, у которых атомы хлора прикреплены к соседним атомам углеродной цепи.

Дегидрогалогенирование вицинальных галогеналканов можно осуществить, используя цинк или магний:

Дегидрирование алканов

Пропускание алканов над катализатором (Ni, Pt, Pd, Al 2 O 3 или Cr 2 O 3) при высокой температуре (400-600 о С) приводит к образованию соответствующих алкенов:

Получение алкадиенов

Дегидрирование бутана и бутена-1

В настоящий момент основным методом производства бутадиена-1,3 (дивинила) является каталитическое дегидрирование бутана, а также бутена-1, содержащихся в газах вторичной переработки нефти. Процесс проводят в присутствии катализатора на основе оксида хрома (III) при 500-650°С:

Действием высоких температур в присутствии катализаторов на изопентан (2-метилбутан) получают промышленно важный продукт – изопрен (исходное вещество для получения так называемого «натурального» каучука):

Метод Лебедева

Ранее (в Советском Союзе) бутадиен-1,3 получали по методу Лебедева из этанола:

Дегидрогалогенирование дигалогензамещенных алканов

Осуществляется действием на галогенпроизводные спиртового раствора щелочи:

Получение алкинов

Получение ацетилена

Пиролиз метана

При нагревании до температуры 1200-1500 о С метан подвергается реакции дегидрирования с одновременным удваиванием углеродной цепи – образуются ацетилен и водород:

Гидролиз карбидов щелочных и щелочноземельных металлов

Действием на карбиды щелочных и щелочно-земельных металлов воды или кислот-неокислителей в лаборатории получают ацетилен. Наиболее дешев и, как следствие, наиболее доступен для использования карбид кальция:

Дегидрогалогенирование дигалогеналканов

Получение гомологов ацетилена

Дегидрогалогенирование дигалогеналканов:

Дегидрирование алканов и алкенов:

Получение ароматических углеводородов (аренов)

Декарбоксилирование солей ароматических карбоновых кислот

Сплавлением солей ароматических карбоновых кислот со щелочами удается получить ароматические углеводороды с меньшим числом атомов углерода в молекуле по сравнению с исходной солью:

Тримеризация ацетилена

При пропускании ацетилена при температуре 400°C над активированным углем с хорошим выходом образуется бензол:

Аналогичным способом можно получать симметричные триалкилзамещенные бензолы из гомологов ацетилена. Например:

Дегидрирование гомологов циклогексана

При действии на циклоалканы с 6-ю атомами углерода в цикле высокой температуры в присутствии платины происходит дегидрирование с образованием соответствующего ароматического углеводорода:

Дегидроциклизация

Также возможно получение ароматических углеводородов из углеводородов нециклического строения при наличии углеродной цепи с длиной в 6 или более атомов углерода (дегидроциклизация). Процесс осуществляют при высоких температурах в присутствии платины или любого другого катализатора гидрирования-дегидрирования (Pd, Ni):

Алкилирование

Получение гомологов бензола алкилированием ароматических углеводородов хлорпроизоводными алканов, алкенами или спиртами.

Выделение углеводородов из природного сырья

Источниками предельных углеводородов являются нефть и природный газ .

Основной компонент при­родного газа - простейший углеводород метан, который используется непосредственно или подвергается переработ­ке. Нефть, извлеченная из земных недр, также под­вергается переработке, ректификации, крекингу.

Больше всего углеводородов получают при пере­работке нефти и других природных ресурсов. Но значительное количество ценных углеводородов по­лучают искусственно, синтетическими способами.

Наличие катализаторов изомеризации ускоряет образование углеводородов с разветвленным скелетом из линейных углеводородов:

Добавление катализаторов позволяет несколько уменьшить температуру, при которой протекает реакция.

Гидрирование (присоединение водорода) алкенов

В результате крекинга образуется большое коли­чество непредельных углеводородов с двойной свя­зью - алкенов. Уменьшить их количество можно, добавив в систему водород и катализаторы гидри­рования - металлы (платина, палладий, никель):

Крекинг в присутствии катализаторов гидриро­вания с добавлением водорода называется восста­новительным крекингом . Основными его продук­тами являются предельные углеводороды.

Таким образом, повыше­ние давления при крекинге (крекинг высокого давления) позволяет уменьшить коли­чество газообразных (СН 4 - С 4 Н 10) углеводородов и по­высить содержание жидких углеводородов с длиной цепи 6-10 атомов углерода, которые составляют основу бензинов.

Это были промышленные способы получения алканов, которые являются основой промышлен­ной переработки основного углеводородного сы­рья - нефти.

Теперь рассмотрим несколько лабораторных способов получения алканов.

Нагревание натриевой соли уксусной кисло­ты (ацетата натрия) с избытком щелочи приводит к отщеплению карбоксильной группы и образова­нию метана:

Если вместо ацетата натрия взять пропионат натрия , то образуется этан, из бутаноата натрия - пропан и т. д.

При взаимодействии галогеналканов со щелоч­ным металлом натрием образуются предельные углеводороды и галогенид щелочного металла, на­пример:

Действие щелочного металла на смесь галоген­углеводородов (например, бромэтана и бромметана) приведет к образованию смеси алканов (этана, пропа­на и бутана).

Реакция, на которой ос­нован синтез Вюрца, хорошо протекает только с галоген-алканами, в молекулах которых атом галогена присоединен к первичному атому углерода .

При обработке некоторых карбидов, содержащих углерод в степени окисления -4 (например, карбида алюминия), водой образуется метан:

Основные способы получения кислородсодержащих соединений

Образование галокеналканов при взаимодействии спиртов с галогеноводородами - обратимая реакция. Поэтому понятно, что спирты могут быть получены при гидролизе галогеналканов - реакции этих соединений с водой:

Многоатомные спирты можно получить при гидролизе галогеналканов , содержащих более одного атома галогена в молекуле. Например:

Присоединение воды по π-связи молекулы алкена, например:

Приводит в соответствии с правилом Марковникова к образованию вторичного спирта - пропанола-2:

Гидрирование альдегидов и кетонов

Окисление спиртов в мягких условиях приводит к образованию альдегидов или кетонов. Очевидно, что спирты могут быть получены при гидрирова­нии (востановлении водородом, присоединении во­дорода) альдегидов и кетонов:

Гликоли, как уже отмечалось, могут быть полу­чены при окислении алкенов водным раствором пер­манганата калия . Например, этиленгликоль (этан- диол-1,2) образуется при окислении этилена (этена):

Специфические способы получения спиртов

1. Некоторые спирты получают характерными только для них способами. Так, метанол в про­мышленности получают ре­акцией взаимодействия водо­рода с оксидом углерода (II) (угарным газом) при повы­шенном давлении и высокой температуре на поверхности катализатора (оксида цинка):

Необходимую для этой реакции смесь угарного га­за и водорода, называемую также «синтез-газ», получа­ют при пропускании паров воды над раскаленным углем:

2. Брожение глюкозы . Этот способ получения этилового (винного) спирта известен человеку с древнейших времен:

Способы получения альдегидов и кетонов

1. Альдегиды и кетоны могут быть получены окислением или дегидрированием спиртов. При окислении или дегидрировании первичных спир­тов могут быть получены альдегиды, а вторичных спиртов - кетоны:

2. . Из ацетилена в результате реакции получается уксусный альдегид, из гомо­логов ацетилена - кетоны:

3. При нагревании кальциевых или бариевых солей карбоновых кислот образуются кетон и кар­бонат металла:

Способы получения карбоновых кислот

1. Карбоновые кислоты могут быть получены окислением первичных спиртов или альдегидов :

2. Ароматические карбоновые кислоты образу­ются при окислении гомологов бензола :

3. Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Реакции этерификации и ги­дролиза, катализируемой кислотой, обратимы:

4. Гидролиз сложного эфира под действием во­дного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль:

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Углеводороды, атомы углерода которых связаны одинарными связями, называются насыщенными или предельными углеводородами.

Общее описание

К насыщенным углеводородам относятся ациклические (алканы) и карбоциклические (циклоалканы) соединения. Они отличаются пространственным строением и количеством атомов.

Ряд веществ, сходных по строению, химическим свойствам, но отличающихся количеством атомов, называется гомологическим. Вещества, входящие в состав гомологического ряда, называются гомологами.

Алканы - это гомологический ряд метана CH 4 .

Циклоалканы или нафтены - гомологический ряд циклопропана. Общее описание предельных углеводородов представлено в таблице.

Признак

Алканы

Циклоалканы

Общая формула

Форма молекулы

Линейная, разветвлённая

Циклическая в виде треугольника, квадрата, пятиугольника, шестиугольника

Примеры гомологов

CH 4 - метан

C 3 H 6 - циклопропан

C 2 H 6 - этан

C 4 H 8 - циклобутан

C 3 H 8 - пропан

C 5 H 10 - циклопентан

C 4 H 10 - бутан

C 6 H 12 - циклогексан

C 5 H 12 - пентан

C 7 H 14 - циклогептан

C 6 H 14 - гексан

C 8 H 16 - циклооктан

C 7 H 16 - гептан

C 9 H 18 - циклононан

C 10 H 20 - циклодекан

C 9 H 20 - нонан

C 11 H 22 - циклоундекан

C 12 H 24 - циклододекан

Соединения, которые имеют одинаковое количество атомов, но разное строение, называются изомерами. Все алканы, начиная с бутана, имеют изомеры. К названию прибавляется приставка изо- (изобутан, изопентан, изогексан). Формула остаётся неизменной.

Рис. 1. Структурная формула бутана и изобутана.

Для циклоалканов характерны три вида изомерии:

  • пространственная - расположение относительно плоскости цикла;
  • углеродная - присоединение к СН 2 -группе дополнительных групп;
  • межклассовая - образование изомеров с алкенами.

В зависимости от присоединяемой группы меняется название вещества. Например, метилциклопропан имеет циклическую структуру в виде треугольника с присоединённым метилом (СН 3). Название «1,2-диметилциклопентан» говорит о циклическом строении с двумя присоединёнными молекулами метила. Цифры указывают, к каким углам пятиугольника присоединён метил.

В углах фигуры циклоалканов всегда находится группа CH 2 , поэтому её часто не записывают, а просто рисуют фигуру. Количество углов указывает на количество атомов углерода. Дополнительные группы дописывают к углам через штрих.

Рис. 2. Примеры графических формул циклоалканов.

Получение

Существуют промышленные и лабораторные способы получения алканов. В промышленности:

  • выделение из нефти, газа, каменного угля;
  • газификация твёрдого топлива: C + 2H 2 → CH 4 .

В лаборатории:

  • гидролиз карбида алюминия:

    Al 4 C 3 + 12H 2 O → 4Al(OH) 3 + 3CH 4 ;

  • реакция замещения:

    2CH 3 Cl + 2Na → CH 3 -CH 3 + 2NaCl;

  • реакция обмена:

    CH 3 COONa + NaOH → Na 2 CO 3 + CH 4 .

Циклоалканы получают путём выделения из природных источников - нефти, газа, а также при дегидрировании алканов и гидрировании аренов:

  • С 6 Н 14 ↔ C 6 H 12 + Н 2 ;
  • C 6 H 6 + 3H 2 → C 6 H 12 .

Свойства

Алканы и циклоалканы имеют схожие химические свойства. Это малоактивные вещества, реагирующие только при дополнительных условиях - нагревании, давлении. Реакции предельных углеводородов:

  • горение:

    CH 4 + 2O 2 → CO 2 + 2H 2 O + Q;

  • замещение (например, галогенирование):

    CH 4 + Cl 2 → CH 3 Cl + HCl;

  • присоединение:

    C 6 H 12 + H 2 → C6H 14 ;

  • разложение:

    C 6 H 12 → C 6 H 6 + 3H 2 .

Рис. 3. Горение метана.

С увеличением молекулярной массы предельных углеводородов и, соответственно, числа атомов углерода в гомологических рядах увеличивается температура кипения веществ. Циклоалканы кипят и плавятся при более высоких температурах, чем алканы. Метан, этан, пропан, бутан - газы. Вещества, в состав которых входит 5-15 атомов углерода (с C 5 H 12 по C 15 H 32) - жидкости. Вещества, содержащие более 15 атомов углерода, - находятся в твёрдом состоянии.

Что мы узнали?

Схожие по свойствам вещества - алканы и циклоалканы - относятся к предельным углеводородам. Алканы - соединения с линейным строением молекул, циклоалканы - циклические углеводороды, образующие треугольные, четырёхугольные, пятиугольные структуры. Насыщенные углеводороды получают из полезных ископаемых, а также промышленным или лабораторным путём. Это малоактивные вещества, вступающие в реакции замещения, присоединения, горения, разложения только при дополнительных условиях.

Тест по теме

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 117.

Предельные углеводороды - это углеводороды, в молекулах которых имеются только простые (одинарные) связи (-связи). Предельными углеводородами являются алканы и циклоалканы.

Атомы углерода в предельных углеводородах находятся в состоянии sp 3 -гибридизации.

Алканы - предельные углеводороды, состав которых выражается общей формулой C n H 2n+2 . Алканы являются насыщенными углеводородами.

Изомеры и гомологи

г CH 4
метан
CH 3 —CH 3
этан
CH 3 —CH 2 —CH 3
пропан
CH 3 —(CH 2) 2 —CH 3
бутан

2-метилпропан
CH 3 —(CH 2) 3 —CH 3
пентан

2-метилбутан

2,2-диметилпропан
CH 3 —(CH 2) 4 —CH 3
гексан

2-метилпентан

2,2-диметилбутан

2,3-диметилбутан

3-метилпентан
и з о м е р ы

Физические свойства алканов

При комнатной температуре С 1 -C 4 - газы, C 5 -C 15 - жидкости, C 16 и следующие - твердые вещества; нерастворимы в воде; плотность меньше 1 г/см 3 ; жидкие - с запахом бензина.

С увеличением числа атомов углерода в молекуле возрастает температура кипения.

Химические свойства алканов

Малоактивны в обычных условиях, не реагируют с растворами кислот и щелочей, не обесцвечивают раствор KMnO 4 и бромную воду.

>

Получение алканов

>>

Циклоалканы - предельные углеводороды, состав которых выражается формулой C n H 2n . В состав молекул циклоалканов входят замкнутые углеродные цепи (циклы).

Изомеры и гомологи

г Циклопропан C 3 H 6

или
Циклобутан C 4 H 8

или
Метилциклопропан
Циклопентан C 5 H 10

или
Метилциклобутан
1,1-диметилциклопропан
1,2-диметилциклопропан
Этилциклопропан
и з о м е р ы

Упрощенно углеводородный цикл часто изображают правильным многоугольником с соответствующим числом углов.

Физические свойства мало отличаются от свойств алканов.

Химические свойства

За исключением циклопропана и циклобутана циклоалканы, как и алканы, малоактивны в обычных условиях.

Общие свойства циклоалканов (на примере циклогексана):

>

Особые свойства циклопропана и циклобутана (склонность к реакциям присоединения):

Способы получения циклоалканов

Алгоритм составления названий предельных углеводородов

  1. Найдите главную углеродную цепь: это самая длинная цепь атомов углерода.
  2. Пронумеруйте атомы углерода в главной цепи, начиная с того конца, к которому ближе разветвление.
  3. Укажите номер атома углерода в главной цепи, у которого есть заместитель и дайте название заместителю. Если заместителей несколько, расположите их по алфавиту. Перед названием одинаковых заместителей укажите номера всех атомов углерода, с которыми они связаны, и используйте умножающие приставки (ди-, три-, тетра-).
  4. Напишите название главной цепи с суффиксом -ан. Корни названий главной цепи: C 1 - мет, С 2 - эт, С 3 - проп, C 4 - бут, C 5 - пент, C 6 - гекс, С 7 - гепт, C 8 - окт, С 9 - нон, C 10 - дек. Названия незамещенных циклоалканов образуются из названия предельного углеводорода с добавлением префикса цикло-. Если в циклоалкане есть заместители, то атомы углерода в цикле нумеруются от самого простого заместителя (самого старшего, метила) к более сложному кратчайшим путем, и положения заместителей указываются так же, как и в алканах.

Задачи и тесты по теме "Тема 1. "Предельные углеводороды"."

  • Углеводороды. Полимеры - Органические вещества 8–9 класс

    Уроков: 7 Заданий: 9 Тестов: 1

  • - Человек в мире веществ, материалов и химических реакций 8–9 класс

    Уроков: 2 Заданий: 6 Тестов: 1

  • Классификация веществ - Классы неорганических веществ 8–9 класс

    Уроков: 2 Заданий: 9 Тестов: 1


  • А. Дана характеристика одного вещества-участника реакции (масса, объем, количество вещества), нужно найти характеристику другого вещества.

    Пример. Определите массу хлора, необходимого для хлорирования по первой стадии 11,2 л метана.

    Ответ: m (Cl 2) = 35,5 г.

    Б. Расчеты с использованием правила объемных отношений газов.

    Пример. Определите, какой объем кислорода, измеренного при нормальных условиях (н. у.), потребуется для полного сгорания 10 м 3 пропана (н. у.).

    Ответ: V (O 2) = 50 м 3 .

    Убедившись, что все необходимое усвоено, переходите к выполнению заданий к теме 1. Желаем успехов.


    Рекомендованная литература:
    • О. С. Габриелян и др. Химия 10 кл. М., Дрофа, 2002;
    • Л. С. Гузей, Р. П. Суровцева, Г. Г. Лысова. Химия 11 кл. Дрофа, 1999.
    • Г. Г. Лысова. Опорные конспекты и тесты по органической химии. М., ООО "Глик плюс", 1999.
angellash.ru - ОтделкаЭксперт - Информационный сайт